NEW LIGNANS FROM DACRYDIUM INTERMEDIUM: PMR AND CMR SPECTROSCOPY

OF PHENYLTETRALIN LACTONES AND ACETALS

Richard C. Cambie* and John C. Parnell
Department of Chemistry, University of Auckland, New Zealand

Russell Roarigo
Department of Chemistry, Wilfrid Laurier University, Waterloo, Canada

During an examination of the New Zealand Podocarpaceae ${ }^{l}$ we have investigated the heartwood constituents of Dacrydium intermedium T. Kirk, the bark of which has been shown to be a rich source of ecdysones. ${ }^{2}$ We report here the structure of three compounds related to a - and β-conidendrins, which are the first examples of lignan acetals. Extraction of the wood with ether followed by chromatography of the extract on silica gel gave a lignan fraction which was acetylated and separated into five major components by reversed-phase preparative HPLC (water methanol). Three were obtained pure by this means (but not by any other) and were identified as (1) ($\mathrm{mp} 201^{\circ},[\alpha]_{\mathrm{D}}-76.3^{\circ}$), (2) (mp $156-157^{\circ},[\alpha]_{\mathrm{D}}+59.3^{\circ}$), and (3) (mp $164-165^{\circ},[\alpha]_{\mathrm{D}}+57.7^{\circ}$)
$1_{H} \operatorname{nmr}(220 \mathrm{MHz})$ spectral details of the non-aromatic ring protons of 1,2, and 3 and of the diacetates $\underline{4}$ and $\underline{5}$ of α - and β-conidendrin are given in Table 1 ; other absorptions were unexceptional and are consistent with the proposed structures. The close correspondence of the coupling constants and chemical shifts of $\underline{1}$ and $\underline{4}$ allows their assignment to the same stereochemical series (all trans $C_{1}-C_{2}-C_{3}$) while the results for $2, \underline{3}$, and $\underline{5}$ clearly indicate that their B / C ring junction is cis. Models and observed couplings indicate a chair conformation for ring B in $\underline{1}$ and $\underline{4}$ but a twist boat in $\underline{2}, \underline{3}$, and $\underline{5}$ where ring D adopts a quasi-axial conformation Models also establish the relative configurations at $C_{3 a}$ in $\underline{1}, \underline{2}$, and $\underline{3}$ to be as shown since their $H_{2}-H_{2 a}$ couplinys constitute an internal standard for the cis and trans B/C systems. The appearance of $H_{3 a}$ as a singlet in the spectra of 2 and 3 is consistent with a dihedral angle of ca. 90° observed in models.

The mass spectral behaviour of 1, 2, and 3 reinforces the structural proposals, each compound giving peaks corresponding to the molecular ions and to the stepwise loss of two ketene units. Strong peaks corresponding to the loss of the fragments ROH and RO. from both the molecular ions and the deacetylated products were also evident. In addition, plausible structures consistent with the decomposition of a phenyltetralin skeleton can be drawn for common ions which appeared at m/e 341, 340, 216, 175, and 137.
${ }^{13} \mathrm{C}$ nmr assignments for $\underline{1}-\underline{5}$ are given in Table 2. These are based on standard chemical shift theory and are aided by observed SFORD multiplicities, published and unpublished model studies, and by first order interpretation of spin coupling patterns in the fully coupled spectra. C_{1} (in $\underline{1}, \underline{2}, \underline{4}$ and 5) and $C_{3 a}$ (in $\underline{1}$ and 2) were assigned by high power irradiation of H_{1} and $\mathrm{H}_{3 \mathrm{a}}$ respectively. C_{2} and C_{3} in α-conidendrin diacetate (4) were differentiated by comparison of the shifts resulting from the closure of ring B in a model system ${ }^{3}$ of identical stereochemistry (Table 3). Results obtained by this method for C_{1} and C_{4} are also in good agreement with the assignments made independently for these atoms. Assignments for c_{1}, c_{2}, and C_{3} in the B / C cis isomer β-conidendrin diacetate (5) depend upon high power irradiation (C_{1}) and specific deuteration ${ }^{4}\left(C_{3}\right)$. Assignments of C_{2} and C_{3} in the acetals $\underline{1}, \underline{2}$, and 3 are based on similar comparisons to the above with published resonances ${ }^{5}$ of $\underline{9}$ and 10 (Table 3). Again, independently assigned resonances of $C_{2 a}$ and C_{4} provide an internal test.

The structures of $\underline{1}$ and $\underline{2}$ were confirmed by conversion into optically active samples of $\underline{4}$ and $\underline{5}$ respectively, by treatment of the former with $B F_{3}$-etherate and m-chloroperbenzoic acid. ${ }^{6}$ since the absolute configurations of $\underline{4}$ and $\underline{5}$ are known ${ }^{7}$ the absolute configuration of $\underline{1}$ and 2 follows. Cubebin, a hemi-acetal, is the only previous example of a reduced lactonic lignan. ${ }^{8}$ Compound (3), the least abundant of the acetals from D. intermedium is a rare example of a natural product containing an o-ethyl group.

TABLE 1. $\mathrm{l}_{\mathrm{H} n \mathrm{~nm}}$ resonances (δ) and coupling constants (H_{2}) of non-aromatic protons (CDCl_{3})

Lignan	H_{1}	H_{2}	$\mathrm{H}_{2} \mathrm{a}^{-e q}$	$\mathrm{H}_{2} \mathrm{a}^{-\mathrm{ax}}$	H_{3}	$\mathrm{H}_{3 \mathrm{a}}$	$\mathrm{H}_{4}-\mathrm{eq}$	$\mathrm{H}_{4}{ }^{\text {-ax }}$
4	4.08	2.60	4.27	4.02	2.65		3.30	3.05
	d(10)	m	$\mathrm{q}(9,6.5)$	$\mathrm{q}(9,10)$	m		$\mathrm{q}(16.5,5)$	$\mathrm{q}(16.5,11)$
$\underline{1}^{\text {a }}$	3.93	2.4	3.87	3.84	2.3	5.05	3.11	2.91
	d(10)	m	q(8.5, 6.5)	$q(8.5,10)$	m	d(5.5)	q(15.5,5)	q(15.5,11.5)
$\underline{5}^{\text {b }}$	3.67	3.00	4.06	4.36	3.1 '		3.23	2.96
	d(10.5)	m	$q(10,3)$	$\mathrm{q}(10,7)$	m^{c}		$(16){ }^{\text {c }}$	$(16){ }^{\text {c }}$
$\underline{2}$	3.59	$\begin{aligned} & 2.50- \\ & 2.82 \end{aligned}$	3.68	3.96	$\begin{aligned} & 2.50- \\ & 2.82 \end{aligned}$	4.89	3.05	$\begin{aligned} & 2.50- \\ & 2.52 \end{aligned}$
	d(10)	m	q(9,2.5)	q(9,7)	m	s	m	m
$\underline{3}$	3.59	$\begin{aligned} & 2.50- \\ & 2.82 \end{aligned}$	3.68	3.98	$\begin{aligned} & 2.50- \\ & 2.82 \end{aligned}$	5.0	3.05	$\begin{aligned} & 2.50- \\ & 2.82 \end{aligned}$
	d(10)	m	q ($9,2.5$)	q $(9,7)$	m	s	m	m

[^0]| table 2. | | ${ }^{13} \mathrm{C}$ nmr resonances (δ in p.p.m. from TMS) | | | | | | | | $\underline{4}$ | $\underline{1}$ | $\underline{5}$ | $\underline{2}$ | $\underline{3}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | | 4 | | $\underline{1}$ | 5 | $\underline{2}$ | $\underline{3}$ | | | | | | | |
| c_{1} | d | 49.7 | | 49.1 | 46.6 | 47.5 | 47.6 | $\mathrm{c}_{8 \mathrm{a}}$ | s | 130.5 | 131.3 | 131.4 | 133.1 | 133.4 |
| c_{2} | d | 47.3 | | 49.5 | 41.2 | 45.8 | 46.0 | C_{1}, | s | 140.8 | 142.6 | 138.6 | 140.1 | 140.4 |
| $c_{2 a}$ | t | 71.5 | | 70.9 | 71.2 | 70.6 | 70.8 | c_{2}, | d | 111.9 | 112 | 113.1 | 113.4 | 113.7 |
| c_{3} | d | 41.5 | | 47.6 | 38.6 | 44.8 | 45.1 | C_{3}, | s | 151.5 | 151.2 | 151.4 | 151.2 | 151.4 |
| $\mathrm{c}_{3 \mathrm{a}}$ | s | 176.4 | | | 179.1 | | | C_{4}, | s | 139 | 138.6 | 139 | 138 | 139.9 |
| | d | | | 109.9 | | 110.6 | 109.6 | c_{5}, | d | 123.1 | 122.8 | 121.9 | 121 | 121.7 |
| C_{4} | t | 29.6 | | 31.9 | 28.4 | 31.6 | 31.7 | C_{6}. | d | 120.6 | 120.6 | 120.9 | 121.4 | 121.3 |
| $\mathrm{C}_{4 \mathrm{a}}$ | s | 133.6 | | 134.9 | 133.9 | 136 | 136.1 | Arome | t | 55.9 | 55.7 | 55.8 | 55.8 | 56,56.2 |
| C_{5} | d | 113 | | 112.8 | 112.1 | 111.7 | 111.8 | $\mathrm{C}_{3 \mathrm{a}} \mathrm{OMe}$ | t | - | 56.4 | - | 54.4 | - |
| c_{6} | s | 149.9 | | 149.5 | 149.9 | 149.3 | 149.6 | осоме | t | ${ }^{2} 20.5$ | 20.5 | 20.7 | 20.6 | 20.7 |
| c_{7} | s | 138.3 | | 138 | 138 | 137.8 | 138.1 | осоме | s | 168.9 | 168.6 | 168.9 | 168.9 | 169.2 |
| c_{8} | d | 123.6 | | 123.5 | 123.2 | 123 | 123.1 | $\mathrm{C}_{3 \mathrm{a}}{ }^{\text {OEt }}$ | t, q | - | - | - | - | $62.7,15.3$ |
| table | | Shift parameters for $c_{1}-C_{4}$ and $c_{2 a}$ | | | | | | ${ }^{4}$ obs | 4^{4} calc. | | $\Delta(\underline{1-4)}$ | $\Delta(\underline{2}-5)$ | | $\Delta(\underline{9}-10) *$ |
| | $\underline{6}$ | 7 | | $\Delta(\underline{-6})$ | | 8 | | | | | | | | | |
| c_{1} | 35.8 | 48.0 | | + 12.2 | | 38.3 | | 49.7 | 50.5 | | - 0.6 | + 0.9 | | |
| c_{2} | 43.7 | | 48.2 | + 4.5 | | 40.9 | | 47.3 | 45.4 | | + 2.2 | | | + 4.0 |
| c_{3} | 43.7 | | 39.9 | - 3.8 | | 46.5 | | 41.5 | 42.7 | | + 6.1 | | | + 5.8 |
| C_{4} | 35.8 | | 33.2 | | - 2.6 | 34.5 | | 29.6 | 31.9 | | $+2.3$ | | | |
| $c_{2 a}$ | | | | | | | | 71.5 | | | - 0.6 | | . 6 | - 1.4 |

* for atoms equivalent to c_{2}, C_{3}, and $c_{2 a}$

(1)

(5)

(8)

(2) $R=M e$
(3) $R=E t$

(6)

(9)

(4)

(7)

(10)

References:

1. For a summary of constituents see R.C. Cambie, J. Roy. Soc. N.Z., 6, 307 (1976).
2. G.B. Russell., P.G. Fenmore, D.H.S. Horn, and E.J. Middleton, Aust. J. Chem., 25, 1935 (1972
3. S.F. Fonseca, J. de P. Carpello, L.E.S. Barata, and E.A. Ruveda, Phytochem., 17. 499 (1978).
4. W.M. Hearon, H.B. Lackey, and W.W. Moyer, J. Org. Chem., 73, 4005 (1951).
5. L.F. Johnson and W.C. Jankowski, 'Carbon-13 NMR Spectra', Wiley Interscience, 1972. Spectra Nos. 60 and 123.
6. P.A. Grieco, T. Oguri, and Y. Yokoyama, Tetrahearor Lett., 419 (1978).
7. T.J. Petcher, H.P. Weber, M. Luhn, and A. von Wartburg, J.C.S. Perkin II, 288 (1973); J.L. Hartwell and A.w. Schrecker, Fortschr. Chern. Org. Naturstoffe, 15, 83 (1958).
8. J.E. Batterbee, R.S. Burden, L. Crombie, and D.A. Whiting, J. Chem. Soc. C, 2470 (1969). Acknowledgements: One of us (RR) thanks the National Research Council of Canada for support.

[^0]: ${ }^{a}$ in pyridine- d_{5}
 ${ }^{\mathrm{b}} \mathrm{H}_{2}$ and H_{4} determined from 3-deutero compound
 C ABC system

